Nearest-Biclusters Collaborative Filtering

نویسندگان

  • Panagiotis Symeonidis
  • Alexandros Nanopoulos
  • Apostolos Papadopoulos
  • Yannis Manolopoulos
چکیده

Collaborative Filtering (CF) Systems have been studied extensively for more than a decade to confront the “information overload” problem. Nearest-neighbor CF is based either on common user or item similarities, to form the user’s neighborhood. The effectiveness of the aforementioned approaches would be augmented, if we could combine them. In this paper, we use biclustering to disclose this duality between users and items, by grouping them in both dimensions simultaneously. We propose a novel nearest-biclusters algorithm, which uses a new similarity measure that achieves partial matching of users’ preferences. Performance evaluation results are offered, which show that the proposed method improves substantially the performance of the CF process. We attain more than 30% and 10% improvement in terms of precision and recall, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nearest-Biclusters Collaborative Filtering with Constant Values

Collaborative Filtering (CF) Systems have been studied extensively for more than a decade to confront the “information overload” problem. Nearest-neighbor CF is based either on common user or item similarities, to form the user’s neighborhood. The effectiveness of the aforementioned approaches would be augmented, if we could combine them. In this paper, we use biclustering to disclose this dual...

متن کامل

DNA Microarray Data Analysis: A Novel Biclustering Algorithm Approach

Biclustering algorithms refer to a distinct class of clustering algorithms that perform simultaneous row-column clustering. Biclustering problems arise in DNAmicroarray data analysis, collaborative filtering, market research, information retrieval, text mining, electoral trends, exchange analysis, and so forth. When dealing with DNA microarray experimental data for example, the goal of bicluste...

متن کامل

Optimizing Collaborative Filtering by Interpolating the Individual and Group Behaviors

Collaborative filtering has been very successful in both research and E-commence applications. One of the most popular collaborative filtering algorithms is the k-Nearest Neighbor (KNN) method, which finds k nearest neighbors for a given user to predict his interests. Previous research on KNN algorithm usually suffers from the data sparseness problem, because the quantity of items users voted i...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

Evaluating Probabilistic Matrix Factorization on Netflix Dataset

Collaborative Filtering attempts to make automatic taste recommendations by examing a large number of taste information. Methods for achieving Collaborative Filtering can be broadly categorized into model based, and memory based techniques. In this project, we review and implement three variants of Probabilistic Matrix Factorization, a model based Collaborative Filtering algorithm. We compare t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006